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EFFECT OF A PLANE ACOUSTIC PRESSD~E WAVE ON A REINFORCED 

CYLINDRICAL SHELL 

N. i. Aieksandrova and i. V. Efimova UDC 539.3 

An investigation of the strength of reinforced shells against pulsed loads is required 
to determine the limits of applicability of various designs in mechanical engineering and 
construction. This has resulted in a large number of publications on the development of 
theory and calculationai method for ribbed shells (see review [i]). The effect of reinforce- 
ment ribs on the stress-strain state and the kinematic fields of cylindrical shells immersed 
in a fluid has been examined for transient excitation [2-4]. Special attention has been paid 
[2] to membrane stresses in the central cross section under the action of a plane wave. Ra- 
dial displacements have been investigated [3] for axissnnmetrie loading in the center of the 
shell, interaction of the fluid with the shell has been studied [4] according to the hypoth- 
esis of plane reflection. The behavior of flexure stresses on reinforced shells has hardly 
been studied. 

Here we estimate the flexure and membrane stresses and the displacements of periodically 
reinforced shells during the transverse action of a plane translational pressure wave. A 
numerical solution of the problem is obtained by using a Fourier expansion in the angular 
coordinate and by using finite differences in the other coordinates. Numerical and analytical 
results are compared. The dynamic-response factor and the initial time at which these results 
coincide are determined. 

i. The transient effect of a plane translational pressure wave is investigated for an 
infinitely long, thin, elastic cylindrical shell, which is periodically reinforced by ribs and 
immersed in an ideal elastic fluid. The shell is either empty or filled with the same fluid 
as surrounds it. The front of the incoming wave is parallel to the axis of the shell. The 
movement of the shell is described by linear equations of the Kirchhoff-Love theory; the 
excitations in the fluid are described by the wave equation for the velocity potential. The 
equations of motion for the m-th mode of oscillations along the angle @ have the form 
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Here t is time; u, v, and w are displacements along the x axis, the tangential direction 8, 
and the radial direction r; P is the pressure (assumed to be known) in the incoming wave; 
PZ is the total hydrodynamic pressure which acts on the shell from the inner and outer fluids; 

is the potential for the particle velocity of the fluid in the incoming, reflected, and 
diffracted waves; P0 and c o are the density and sound speed in the fluid; p is the density 
of the shell material; R and 6 are the shell radius and thickness; E is Young,s modulus; 

. . / ' . - , I  [ , ,O 2 i s  v o l s s o n ' s  r a t i o ;  and  c = r 1 7 7  - ) i s  t h e  s o u n d  s p e e d  i n  a t h i n  p l a t e .  

The r i b s ,  w h i c h  a r e  l o c a t e d  i n  s e c t i o n s  x = _+L(2k + i )  ( k  = 0 , 1  . . . .  ) ,  a r e  m o d e l e d  as 
rigid circular plates with a mass m 0. We assume that they only translate (without rotation) 
as rigid bodies, if U is the displacement w = -U-cos8 and v = U'sin8 are fulfilled in the 
section x = iL" ~zK'~ + i). This means that only the first harmonic in the Fourier expansion 
differs from zero: 

wm = v , ~  = 0  ( m = / : l ) ,  w 1 = - - U ,  z, 1 = U, U = ( ~ 1 - - w l ) / 2 .  

The equation for U is obtained from (i.i) by considering all forces which act on the side 
of the shell at the rib: 

9 , / 9 ) / c  2 o~ t - -  v a2vl I - -  v aul 
( t  + ot 2 = ~  ax~ 4R Ox 
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- -  v 2 - ~  \ Ox 2 + Ox ~ ] + 2"4 Ox - ' ~  + - -  p.  = o 26c29 ' 4aR6L" 

i n  t h e  s e c t i o n s  x = _+2Lk and  x = _+L.(2k + 1 ) ,  t h e  f o l l o w i n g  c o n d i t i o n s  a r e  f u l f i l l e d :  

x = --+-2Lk: u , ,  = O, O%~lOx = O, OwmlOx = O, 

OVmlOX = O, Ozwm,lax3 = O, ( 1 . 2 )  

x = -+-L(2k 4- I): u~ = 0, O%,/Ox = O, 0 3 w , / O x  3 =- O, 

U,m = vm = 0 (m =/= t), u,, = - -v  I = - - U .  

Due t o  t h e  s y m m e t r y ,  h e r e a f t e r  we w i l l  e x a m i n e  t h e  b e h a v i o r  o f  t h e  s y s t e m  i n  t h e  i n t e r v a l  
x e [ 0 ,  L ] .  The f o l l o w i n g  n o n p e n e t r a t i o n  c o n d i t i o n  i s  f u i f i i i e d  on t h e  c o n t a c t  s u r f a c e  b e t w e e n  
t h e  f l u i d  and t h e  s h e l l :  

r = B + 0: OwmlOt = O%~/Or 4- Vrra; r = R - -  0: 

Otv,~lOt = Ocpm!Or, 

where Vrm is the radial particle velocity in the incoming wave. The requirement that the 
potential be bounded leads to conditions on the axis r = 0 

0~ 7 ab0 o% (1.3) 
i a2%,=2 + O, q~,~=O ( m ~ > t ) .  
C2o Ot 2 Or" ax 2 ' Or - -  

E q u a t i o n s  ( 1 . 3 )  h a v e  b e e n  o b t a i n e d  [5 ]  w i t h  t h e  L a p l a c e  t r a n s f o r m  i n  t i m e  and  t h e  F o u r i e r  
t r a n s f o r m  i n  t h e  a x i a l  c o o r d i n a t e ,  and  a l s o  w i t h  a s e q u e n t i a l  l i m i t i n g  t r a n s i t i o n  ( r  ~ 0 ) .  
The i n i t i a l  c o n d i t i o n s  w e r e  h o m o g e n e o u s ,  i n  t h e  i n c o m i n g  w a v e ,  w h i c h  r e a c h e s  t h e  s u r f a c e  o f  
the shell at time t = O, the pressure is given in the form P = PoH0(c0t - R + r cos e) where 
P0 is the pressure amplitude at the wave front, and H 0 is the Heavyside function. Then the 
terms in the Fourier series for the pressure and the particle velocity in the fluid in the 
incoming wave are defined by the equations 

P~ { s i n ( m + t )  O~ } 
v ~ , m = - -  m + i  + B ~  , ~P0c0 
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sin (m -- t) 0 o 
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17Z - -  1 

t 
arccos (t - -  cot/R ), 0 ~ Cot/R ~ 2, 

~, cot/R >~ 2. 

2. We now derive several estimates of the perturbation parameters. Comparison of 
asymptotic (t ~ ~) and numerical solutions, derived [5] for smooth shells, showed that, due 
to the radiation of waves into the external fluid, the perturbation parameters for the zero 
h a r m o n i c  " ~ t ~ l e x u r e s ,  s t r e s s e s ,  and  t o t a l  p r e s s u r e )  t e n d  t o  t h e i r  l i m i t i n g  v a l u e s ,  w h i c h  c o r -  
respond to the static values. We assume that the presence of the ribs has a weak effect on 
P2, and we determine Py., from the problem of a plane wave acting on an infinite cylindrical 

without ribs [5]: PF. = P0/(l +y) . Here ~ = zP0cS~Ipc for a shell filled with fluid and 
y = 0 for an empty shell. 

By using the value of PE for a smooth shell and throwing out inertial terms in (i.i), 
we obtain the static solution for the problem for a shell with ribs according to the zero 
mode which corresponds to the asymptote for t ~ =: 

0 [Ou v ] v Ou w 82 04to Pz 
a--Tth-Tz+-~ w =(!' ~ o - 7 + ~ - ~ + T f f 0 - ~ +  0 - ~ = 0 "  ( 2 . 1 )  

A s o l u t i o n  [6 j  t o  t h e  s y s t e m  ( 2 . 1 )  h a s  b e e n  c o n s t r u c t e d  u n d e r  t h e  a s s u m p t i o n  t h a t  a u / a x  + 
( v / R ) .  w = O. We make an  a n a l o g o u s  a r g u m e n t  w i t h o u t  i m p o s i n g  t h i s  l i m i t a t i o n .  By u s i n g  t h e  
boundary conditions (1.2) for m = 0, we solve (2.1) for a shell with a fluid: 

Po R 2 t 
w - -  - -  {t - -  A cos ~v ch ~x - -  B sin ~x sh ~x}, 

pc 2 ( t + ? )  (i t - -v2~18  

= vPo RL t { x  A + B  . A--B ), ,~ 
u pc2(l+V) ~ 8(t__v2x/8) ~ - X - - - - - g - - s m a x c h u x - - - - f f - c o s ~ z s h a x  

~z.2) 
L r - -  v '~) ~ ch 2 8 - -  cos 2 8 

= ]/,~_.~ , c z =  , % =  sh 28 -t- sin 28 ' 

2t = 2 (cos 8 sh 8 -{- sin 8 eh []) B = 2 (sin 8 eh 13 - -  cos 8 sh [3) 
sin 28 -4- sh 28 ' sin 28 + sh 28 

i t o 
Here the flexure [o(l) and o~ !)] and membrane [o (~ and o~ )] stresses which are deter- 

X X �9 

mined by the formulas 

o,, t (w + my)} o~ ~ = pc = v ~ + --E 
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for m = 0, we have the form 

a(o) 2 fa~ ~' (w + my)} -- P~ ~ + - i  

z~) = Pc2 2 [ i= ~- ~ (row + v) , 

,~{o%, m } 
a(~)=pc~ -y  v ~ 2 ~ (mw + v) , 

P. n {I - -  A* cos ax  ch ax  - -  B* sin ax  sh ctx}, t ~ ?  8 

(~(t). __ l+?P~ R6 ~ / /  t - - v  ----~3 {-- A* sin ax sh cox -~- B* cos ax ch ax}, 

Po R 
,,(o" : , ' o T ,  ~i  ~ = - ,~ ~ ~ D, 

A * = A ( t - - v : D ) ,  B * = B ( 1 - - C - D ) ,  D =  

~,z;. j )  

I -- ~/~ 

t -- v~/~" 

For an empty shell we set 7 = 0. 

We note that for $ > $0 and ~ - ~x > ~0 the stresses (2.3) hardly depend on x, and Eqs. 
kz.z) and 3) are ~z. simplified significantly. Therefore in a rather wide range of variables 
x (0 < x < x,) we can set 

6o~ ,o  R (o: ., , @)  = 2 + ? 8 '  a~ = - - ~ y - ~ - ~ - D ,  = 0 ,  = 0 ,  

Po  /~2 [3 Po R x 
w =  pc~( t+? )  8 13_4 v u ~ p c 2 ( t + ? )  8 [~_~2" 

(2.4) 

The value of x, is determined to the required numerical accuracy from the expression 

L -- x. V T ~o 
n = T r  ) 

F o r  ~0 = 3 t h e  e r r o r  i n  Eqs .  t z .~ ) ,~  '~ c o m p a r e d  t o  ( 2 . 3 )  and  (2.z)~ i s  l e s s  t h a n  i .5% f o r  x _< x , .  

G r a p h s  o f  t h e  f u n c t i o n s  ( 2 . 3 )  a r e  shown i n  F i g .  i .  The p a r a m e t e r s  o f  t h e  p r o b l e m  a r e  
a s  f o l l o w s :  Pa = 0 . 1 2 8 ,  c o = 0 . 3 ,  v = 0 . 3 ,  p = i ,  c = i ,  p ,  = 0 ,  L = i ,  R = i ,  and  6 = 0 . 0 1 .  

The s o l i d  c u r v e  c o r r e s p o n d s  t o  o ( ~  t h e  d a s h e d  t o  o t - j  t h e  d a s h - d o t  t o  o~ ~ and  t h e  c u r v e  0 X ' ' 
(I) ' , 

w i t h  d o t s  t o  a x The f l e x u r e  s t r e s s e s  o t ! )  and o~ l )  a r e  e s s e n t i a l l y  z e r o  a l l  t h e  way t o  
�9 X ~ 

x = x,; then comes a range of tension, and then a narrow region of very large compression 
/3 

near t h e  r i b s .  The maximum v a l u e  o f  o t - )  i s  a t t a i n e d  a t  x = L:  
X 

Po R 1 / '  3 
~)I~=~ 1+~ 6 ~ "  

I v  

The membrane stress a (~ behaves differently, it is constant up to x, and then changes 

smoothly to va~ -J. its maximum (absolute) value is less than maxla~-] I by vo/• - v-] 

times and has the form 

Po R 

The stress a (~ is constant along the shell and is less than maxla~~ 0) = v.maxlo$ )i). 
X 

Thus, in a rib-reinforced shell the flexure stresses~o [!) are the most critical near the ribs. 
X 

The maximum values of the stresses and the dimensions of the region of nonuniform stresses 
L - x, do not change as the distance between the ribs is increased. Conversely, the shell 
thickness has a substantial effect on the region of nonuniformity and on the maximum ampli- 
tudes of the stress. 
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Comparison of (2.2) and (2.3) with the results of [5] shows that the presence of ribs 
leads to a nonuniformity of the presses near them. Here flexure stresses arise, which are 
absent in the plane problem [5]; they are controlling in this problem, because they exceed 
the membrane stresses. 

The asymptotic velocity * can be obtained from the following expressions, in the plane 
case at late times (t ~ =) we have [5] 

Po ~8 (2.5) 
UP1 ~ "  '~1 - -  

CoP o (t + e) + ?l O~ 

where s = 0 for an empty shell and ~ = i for a shell with fluid. The average mass per length 
of a shell with ribs is larger [than one without]. Therefore, instead of [2.5], we estimate 
the velocity by the quantity 

Po p,8 " ~z.6) lU1 ~ ) "~2 = - - "  

c~176 7 (t + e) + 71 + ?2 

The limits of applicability of these asymptotes can be obtained by comparing them with 
a numerical solution of the problem, which makes it possible to investigate the transient 
strain process over the entire interaction of the wave with the shell. 

3. The numerical solution to the problem was found by using an explicit four-way finite- 
difference grid. The parameters of the difference grid were chosen from the conditions for 
stability and for minimizing numerical divergence 

2RV  2 

t t t > g + -V.h  
idol) 

Comparison of time-dependent flexure stresses, calculated for 6 = 0.0i.R and various 
values of hx, shows that the asymptotic values are practically exact, even for h x = R/40. 

As h x is increased, however, the error in calculating o (!) increases, also on the critical 
X 

side (maximum values of o (1) are less than roughly i.5 times the static values for h x = R/20 
X 

and 2 times for h x = R/10). Nonetheless, values of the displacements, velocities, and mem- 
brane stresses are completely satisfactory for a step h x = R/!0. The hydrodynamic forces can 

be determined with acceptable accuracy by increasing the step h r compared to (3.1) by an 
order of magnitude. 
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Figure 2 shows the stress distributions o~ ~) and G~ !) along the length of a fluid-filled 

shell at various moments in time. Curves 1-3 correspond to times tc0/R = i, 2, and 3. The 
dashed lines show the asymptote (2.3). The parameters of the problem are as follows: P0 = 
0.128, c o = 0.3, v = 0.3, p = i, c = i, L = 1/2, R = i, 6 = 0.01, and p, = 0. it can be seen 

that, starting with tc0/R = 2, the numerical results oscillate relative to the asymptotic 
ones. 

Figure 3 shows time-dependent curves of the flexure stresses o~-) (at the point x = L) 
x 

and the membrane stresses o~ ~ (at the point x = 0) for the zero mode and the velocity & for 

the first mode, obtained for the same parameters as in Fig. 2. The dashed lines correspond 
to the stress asymptote (2.3) and to the velocity asymptote (2.6); the curves i correspond 
to the solution for an empty shell; and 2 to one filled with fluid; and the dot-dash curve 
corresponds to the problem with p, = 0.5. The axisymmetric components of the flexure and 
membrane stresses and the first mode for the velocity reach asymptotic values (2.3) and (2.6) 
at the time t = 3R/c 0 and oscillate around them. The maximum amplitude of * for the first 
mode exceeds the asymptotic value by roughly 40%. Analysis of Eq. (2.6) shows that, for a 
thin shell and a rib mass comparable to the skin mass, the total mass is substantially less 
than the mass of the attached fluid. As a result, the asymptotic and numerical solutions for 
the velocity depend weakly on the rib mass. Actually, the dot-dash curves differ little 
from curve 2. The asymptotic values of the velocity for these parameters are 23.5 and 23.8, 
respectively. 

Comparison of results calculated from the sum of the first three terms in the series 
(m = 0, i, 2) and the sum of six modes (m = 0, .... 5) showed that the amplitude of the 
flexure stresses do not differ by more than 7% in the rib region, where they are maximum. 
Thus, for acceptable accuracy in practical problems on the transverse action of a plane 
wave, it is sufficient to keep only three harmonics (m = 0, i, 2). Figure 4 shows the process 
parameters for m = 0, i, 2. Results ofnumericai calculations confirm the conclusion from 
Sec. 2 that the first mode of motion is the defining one for the velocity, while the 
maximum values for the membrane and flexure stresses are attained for the zero mode. The 
maximum amplitude of the flexure stresses is attained most rapidly for e = ~/2 and x = L, 
and exceeds the analyticalvaiue (2.3) by 40%. Comparison of calculations for various values 
of L showed that changing the skin length hardly changes the maximum amplitudes of the flexure 
stresses. 

Thus, the basic contribution to the stresses comes from the zero mode and the basic con- 
tribution to the radial velocity comes from the first mode. For t Z 6R/c 0, the asymptote 
describes the basic part of the excitations; for t ~ 6R/c 0 the increase in the excitations 
above the asymptote can be -40%. in a reinforced shell, the axial flexure stresses are maxi- 
mum in the rib region. 
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